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SUMMARY 

Phenobarbital stimulated aflatoxin biosynthesis by Aspergillusflavus and this was paralleled by an increase 
in microsomal NADPH-cytochrome P-450 reductase and cytochrome P-450 activities. Aflatoxin biosynthesis 
was inhibited by SKF 525-A, metyrapone and cyanide, inhibitors of the cytochrome P-450 monooxygenase 
system, further suggesting that aflatoxin biosynthesis by A. flavus could be mediated by a cytochrome P-450 
monooxygenase enzyme system. 

INTRODUCTION 

The involvement of particular enzymes in afla- 
toxin biosynthesis has been demonstrated by many 
investigators [22]. Shih and Marth [19] reported 
that aflatoxin production by Aspergillus flavus was 
increased in the presence of NADPH, while the 
conversion of sterigmatocystin to aflatoxin by cell- 
free extracts of A. parasiticus was shown to be 
NADPH-dependent [20] and the enzymes involved 
were considered to be microsomal [4]. A relatively 
stable enzyme system that converted versiconal 
hemiacetal acetate to versicolorin A has been iso- 
lated from the homogenized cells of A. parasiticus 
[24]. 

Monooxygenase enzyme activity involves the in- 
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tegrity of electron flow between co-factor NADPH 
and cytochrome P-450 through NADPH-cyto- 
chrome P-450 reductase. Fungal polysubstrate 
monooxygenase enzyme systems have been shown 
to be involved in the metabolism of a wide range 
of compounds including steroids, dyes, alkaloids 
and patulin, and in drug hydroxylation [9,18,21]. 

Monooxygenases of the cytochrome P-450 type 
are substrate-inducible. Phenobarbital, 3-methyl- 
cholantbrene and certain insecticides and polychlo- 
rinated biphenyls can stimulate the oxidative activ- 
ity of mammalian microsomes, and this has been 
associated with an increase in the microsomal con- 
tent of monooxygenase enzymes [17]. 

The presence of polysubstrate monooxygenase 
activity in the microsomes of A. parasiticus has been 
demonstrated by Bhatnagar et al. [5], together with 
stimulation of aflatoxin synthesis by phenobarbi- 
tone. 
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The present study was conducted to demonstrate 
the involvement of the cytochrome P-450 monoox- 
ygenase enzyme system in aflatoxin biosynthesis by 
A. flavus using phenobarbital induction together 
with the use of selective inhibitors of the monoox- 
ygenase enzyme system, viz. 2-diethylaminoethyl 
2,2-diphenylvalerate HC1 (SKF 525-A) and metyr- 
apone. These latter compounds are believed to in- 
hibit the cytochrome P-450 enzyme system by act- 
ing as alternative substrates [3]. 

MATERIALS AND METHODS 

Microorganism 
Aspergillusflavus 102566 was obtained from the 

Commonwealth Mycological Institute. Stock cul- 
tures were maintained on potato dextrose agar 
(Oxoid) slants at 4~ 

Inoculum 
A. flavus was grown on potato dextrose agar 

slants at 30~ for 10 days. Spores were harvested 
with a sterile wetting solution (100 ml distilled 
water plus three drops of Tween 80), washed three 
times with sterile distilled water and made up to a 
final spore concentration of 2 x 106 per ml. 

Medium 
Sucrose low salts medium was used in these ex- 

periments. The medium contained (per litre): 85 g 
sucrose, 10 g I.-asparagine, 3.5 g (NH4)zSO4, 10 g 
KH2PO4, 2 g MgSO4 �9 7HaO, 75 mg CaC12 �9 2H20, 
10 mg ZnSO4 �9 7HaO, 10 mg FeSO4 �9 7H20, 5 mg 
MnC12 4HzO, 2 mg ammonium molybdate 
((NH4)6MoTO24 �9 4H20) and 2 mg disodium tetra- 

borate (Na2B4OT). 

Culture conditions 
100 ml of medium were dispensed into 250-ml 

wide-mouthed Erlenmeyer flasks supplemented 
with or without 0.2% phenobarbital (PB), plugged 
with non-absorbent cotton wool and autoclaved at 
110~ (10 p.s.i.) for 20 min. SKF 525-A (2 mM), 
metyrapone (6 mM) or KCN (10 mM) were added 
aseptically to flasks after cooling. Flasks were in- 

oculated with 1 ml of inoculum and incubated at 
25~ on a Gallenkamp orbital shaker at 200 rpm 
for 6 days. 

Microsomal preparation and enzyme analyses 
Cultures of A. flavus were chilled in an ice-bath 

for 20 rain and ~ acuum-filtered. The mycelium was 
washed three times with cold distilled water and 
once with cold 0.067 M phosphate buffer, pH 6.9. 
50 g mycetial mat were homogenised for 3 rain in 
a chilled high-speed Waring blender (Universal 
Motor Model 5BA60VL67) with 5 g glass beads 
(Sigma type V) and chilled 0.067 M phosphate buf- 
fer pH 6.9 to give a final concentration of 2 ml buf- 
fer/g wet mycelium. The homogenate was centri- 
fuged at 15 000 x g to obtain a post-mitochondrial 
supernatant. This supernatant was recentrifuged at 
35 000 x g for 3 h to obtain the microsomal pellets. 
All centrifugations were done at 4~ using an MSE 
High Speed 18 centrifuge. 

Microsomal pellets were solubilised by resus- 
pending at approximately 2 mg/ml in 15 ml of 0.1 
M phosphate buffer, pH 7.6, containing 0.01 M 
EDTA, 0.01 M glutathione, 0.25 M sucrose [11] and 
0.5% sodium deoxycholate [7] and stirred in an 
ice-bath for 30 min. The solution was then centri- 
fuged at 35 000 x g at 4~ for 3 h. The supernatant 
obtained was used for protein analysis [6]. Cyto- 
chrome P-450 was assayed by the method of Omura 
and Sato [16] and NADPH-cytochrome P-450 re- 
ductase was assayed by a modification of the 
method of Masters et al. [12]. The assay depended 
upon measurement of the rate of cytochrome c re- 
duction at 550 nm. The reaction mixture contained 
2.9 ml microsomal protein and 0.2 #mol cyto- 
chrome c (Sigma, type III) contained in a 1 cm cu- 
vette. The reaction was started by the addition of 
0.1 M 0.2% NADPH (Sigma, type I) and the re- 
action was observed by measuring changes in ab- 
sorbance at 550 nm against a blank which con- 
tained buffer solution minus NADPH. 

Analytical determination 
For dry weight determinations, the mycelium 

was harvested by Buchner filtration, washed with 
distilled water and dried at 70~ for 24 h, cooled in 



a desiccator, and weighed. 
Aflatoxins from the liquid medium and myce- 

lium were extracted according to the methods of 
Shih and Marth [19] and Uraih and Chipley [23], 
respectively. Aflatoxin residues from sample vials 
were dissolved in 1 ml chloroform, and 10 #1 ali- 
quots were spotted on thin-layer chromatography 
(TLC) plates coated with silica gel G (Merck). Af- 
latoxin standards of B~ and G1 were similarly spot- 
ted. The plates were then developed in the solvent 
system of toluene/ethyl acetate/chloroform/90% 
formic acid (70:50:50:20). The plates were dried in 
a fume-cupboard and observed under long wave 
ultraviolet light (366 rim) in a dark viewing cabinet 
(Type A, P.W. Allen & Co.). The samples which 
fluoresced at the same Rf values as the aflatoxin 
standards were marked and scraped off for quan- 
titative spectrophotometric estimation (Shimadzu 
UV-120-02) according to the method of Nabney 
and Nesbitt [15]. 

Statistical analysis 
An analysis of variance [14] was carried out for 

all results. The differences between the treatment 
means and the control mean were compared using 
least-significant analysis at 95% significant level. 

139 

RESULTS AND DISCUSSION 

The effect of phenobarbital on growth, aflatoxin pro- 
duction and NADPH~cytochrome P~450 reductase 
activity by Aspergillus flavus 

Growth of A. flavus was only slightly enhanced 
in the presence of 0.2% phenobarbital (Table 1). 
However, there was a marked increase in aflatoxin 
production with phenobarbital treatment. Aflatox- 
in B1 levels increased from the control value of 
885.4 #g to 1825.8 #g, while aflatoxin G1 increased 
from 782.1/~g to 1630.5 #g (Table 1). 

The level of NADPH-cytochrome P-450 reduc- 
tase in the microsomes from the control cultures 
gradually increased from day 2 to a maximum level 
of 28.59 #mol cytochrome c reduced/min/mg 
protein at day 6 (Fig. 1). The presence of phenobar- 
bital in the culture medium enhanced the level of 
NADPH-cytochrome c reductase more than 
2-fold. A maximum amount of the enzyme of 66.00 
#tool cytochrome c reduced/min/mg protein was 
obtained in 6-day-old microsomes. 

Fig. 2 shows the carbon monoxide difference 
spectrum of reduced cytochrome P-450 of the so- 
lubilised microsomes of A. flavus. Two peaks were 
observed, viz. a small peak at 420 nm and a larger 

Table 1 

Effect of  PB, SKF 525-A, metyrapone and cyanide on growth and aflatoxin produc!i0n by A. flavus incubated at 25~ 6 days 

Each result represents 'the mean • S.E.M. of  six determinations. 

Medium Mycelial dry weight Aflatoxin ~ g .  100 m1-1) Total B1 + Gt 

(g . 100 m1-1) B1 G1 #g �9 100 m1-1 #g .  g-1 

Control 2.55 -4- 0.11 885.4 • 12.5 782.1 • 8.5 1667.5 4- 21.1 653.9 • 17.7 
PB 3.10 • 0.08 b 1824.8 • 15.7 1630.8 • 12.8 3455.6 • 19.1 1114.7 • 16.5 
(0.2% w/v) 
SKF 525-A 2.88 • 0.09" 159.5 • 5.9 128.3 • 9.8 387.8 • 15.1 99.9 • 6.5 
(2 mM) 
Metyrapone 2.04 • 0.10 b 591.6 • 12.2 369.9 • 8.7 961.5 • 17.1 471.1 • 10.8 
(6 mM) 
KCN c 2.21 i 0.09" 550.8 • 8.8 440.7 i 10.5 991.5 • 15.7 448.6 • 11.7 
(10 mM) 

a No significant difference (P > 0.05) from control. 
b Significant difference (P < 0.05) from control. 
c Added to 2-day-old cultures to allow spore germination. 
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Fig. 1. Effect of  phenobarbital  on microsomal NADPH,cyto-  

chrome P-450 reductase from A. flavus. O, control; 0 ,  pheno- 

barbital-treated. 

peak at 450 nm. There was an increase in the peak 
at 450 nm with the PB-treated microsomes, thus 
substantiating the participation of cytochrome 
P-450 in the biosynthesis of the aflatoxins. The 
induction mechanism of PB is known to affect sev- 
eral levels of cytochrome P-450 monooxygenase 
[21]. The increase of cytochrome P-450 as well as 
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Fig. 2. Carbon monoxide difference spectra of  reduced cyto- 
chrome P-450 of  microsomes from A.flavus; microsomal protein 
content 2 mg/ml.  - - ,  control; . . . .  , phenobarbital-treated. 

NADPH-cytochrome P-450 reductase was paral- 
leled by an increase in aflatoxin biosynthesis of the 
fungus, this being in substantial agreement with the 
previous observations for A. parasiticus [5]. 

The increase in aflatoxin levels with phenobar- 
bital treatment in the present results and with A. 
parasiticus [5] could be due to the increase in the 
activity of the monooxygenase enzyme system, 
since the hydroxylation of the pathway intermedi- 
ates is a crucial step in aflatoxin biosynthesis. Con- 
version of versiconal hemiacetal acetate to versi- 
colorin A [24] and sterigmatocystin to aflatoxin [20] 
could involve monooxygenase activities and, thus, 
could be stimulated by phenobarbital. Phenobar- 
bital has been shown to stimulate trisporic acid pro- 
duction of Blakeslea trispora [8] and alkaloid pro- 
duction by Claviceps purpurea [1,2], and increased 
polysubstrate monooxygenase activity was demon- 
strated in each case. 

The effect of SKF 525-A, metyrapone and cyanide 
on growth and aflatoxin production by Aspergillus 

jqa!,'btS 
SKF 525-A (2 raM) and KCN (t0 raM) did not 

significantly affect growth of A. flavus over the ex- 
perimental period. In contrast, metyrapone (6 raM) 
did result in a small but significant decrease in 
growth (Table 1). 

All compounds significantly reduced aflatoxin 
production. The effect was most marked in the pres- 
ence of SKF 525-A, with approximately 83% in- 
hibition of total aflatoxin synthesis. Metyrapone 
and KCN caused 42% and 40% inhibition, respec- 
tively (Table 1). Similar inhibitory patterns were 
observed in the hydroxylation of benzo(a)pyrene by 
a microsomal preparation of Aspergillus ochraceus 
[10,11] and in the demethylation of pisatin (an an- 
timicrobial compound produced by infected pea tis- 
sue) by Nectaria haematococca [13]. Cyanide also 
strongly inhibited the demethylation reaction in in- 
tact cells of the fungus [13]. 

The present results strongly implicate the in- 
volvement of the cytochrome P-450 monooxygen- 
ase enzyme system in aflatoxin biosynthesis by A. 
j~avus. 
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