The involvement of cytochrome P-450 monooxygenase system in aflatoxin biosynthesis by Aspergillus flavus

Abidin Bin Hamid and John E. Smith

Applied Microbiology Division, Department of Bioscience and Biotechnology, University of Strathclyde, Glasgow, U.K.

Received 5 January 1987 Revised 3 April 1987 Accepted 8 April 1987

Key words: Aflatoxin; Synthesis; Phenobarbital; Cytochrome P-450 monooxygenase

SUMMARY

Phenobarbital stimulated aflatoxin biosynthesis by *Aspergillus flavus* and this was paralleled by an increase in microsomal NADPH-cytochrome P-450 reductase and cytochrome P-450 activities. Aflatoxin biosynthesis was inhibited by SKF 525-A, metyrapone and cyanide, inhibitors of the cytochrome P-450 monooxygenase system, further suggesting that aflatoxin biosynthesis by *A. flavus* could be mediated by a cytochrome P-450 monooxygenase enzyme system.

INTRODUCTION

The involvement of particular enzymes in aflatoxin biosynthesis has been demonstrated by many investigators [22]. Shih and Marth [19] reported that aflatoxin production by *Aspergillus flavus* was increased in the presence of NADPH, while the conversion of sterigmatocystin to aflatoxin by cellfree extracts of *A. parasiticus* was shown to be NADPH-dependent [20] and the enzymes involved were considered to be microsomal [4]. A relatively stable enzyme system that converted versiconal hemiacetal acetate to versicolorin A has been isolated from the homogenized cells of *A. parasiticus* [24].

Monooxygenase enzyme activity involves the in-

tegrity of electron flow between co-factor NADPH and cytochrome P-450 through NADPH-cytochrome P-450 reductase. Fungal polysubstrate monooxygenase enzyme systems have been shown to be involved in the metabolism of a wide range of compounds including steroids, dyes, alkaloids and patulin, and in drug hydroxylation [9,18,21].

Monooxygenases of the cytochrome *P*-450 type are substrate-inducible. Phenobarbital, 3-methylcholanthrene and certain insecticides and polychlorinated biphenyls can stimulate the oxidative activity of mammalian microsomes, and this has been associated with an increase in the microsomal content of monooxygenase enzymes [17].

The presence of polysubstrate monooxygenase activity in the microsomes of *A. parasiticus* has been demonstrated by Bhatnagar et al. [5], together with stimulation of aflatoxin synthesis by phenobarbitone.

Correspondence (present address): A.B. Hamid, Food Technology Division, MARDI, P.O. Box 12301, Kuala Lumpur, 50774, Malaysia.

The present study was conducted to demonstrate the involvement of the cytochrome P-450 monooxygenase enzyme system in aflatoxin biosynthesis by *A. flavus* using phenobarbital induction together with the use of selective inhibitors of the monooxygenase enzyme system, viz. 2-diethylaminoethyl 2,2-diphenylvalerate HCl (SKF 525-A) and metyrapone. These latter compounds are believed to inhibit the cytochrome P-450 enzyme system by acting as alternative substrates [3].

MATERIALS AND METHODS

Microorganism

Aspergillus flavus 102566 was obtained from the Commonwealth Mycological Institute. Stock cultures were maintained on potato dextrose agar (Oxoid) slants at 4° C.

Inoculum

A. flavus was grown on potato dextrose agar slants at 30°C for 10 days. Spores were harvested with a sterile wetting solution (100 ml distilled water plus three drops of Tween 80), washed three times with sterile distilled water and made up to a final spore concentration of 2×10^6 per ml.

Medium

Sucrose low salts medium was used in these experiments. The medium contained (per litre): 85 g sucrose, 10 g L-asparagine, 3.5 g $(NH_4)_2SO_4$, 10 g KH_2PO_4 , 2 g $MgSO_4 \cdot 7H_2O$, 75 mg $CaCl_2 \cdot 2H_2O$, 10 mg $ZnSO_4 \cdot 7H_2O$, 10 mg $FeSO_4 \cdot 7H_2O$, 5 mg $MnCl_2 \cdot 4H_2O$, 2 mg ammonium molybdate ($(NH_4)_6Mo_7O_{24} \cdot 4H_2O$) and 2 mg disodium tetraborate ($Na_2B_4O_7$).

Culture conditions

100 ml of medium were dispensed into 250-ml wide-mouthed Erlenmeyer flasks supplemented with or without 0.2% phenobarbital (PB), plugged with non-absorbent cotton wool and autoclaved at 110°C (10 p.s.i.) for 20 min. SKF 525-A (2 mM), metyrapone (6 mM) or KCN (10 mM) were added aseptically to flasks after cooling. Flasks were in-

oculated with 1 ml of inoculum and incubated at 25°C on a Gallenkamp orbital shaker at 200 rpm for 6 days.

Microsomal preparation and enzyme analyses

Cultures of *A. flavus* were chilled in an ice-bath for 20 min and vacuum-filtered. The mycelium was washed three times with cold distilled water and once with cold 0.067 M phosphate buffer, pH 6.9. 50 g mycelial mat were homogenised for 3 min in a chilled high-speed Waring blender (Universal Motor Model 5BA60VL67) with 5 g glass beads (Sigma type V) and chilled 0.067 M phosphate buffer pH 6.9 to give a final concentration of 2 ml buffer/g wet mycelium. The homogenate was centrifuged at 15 000 \times g to obtain a post-mitochondrial supernatant. This supernatant was recentrifuged at 35 000 \times g for 3 h to obtain the microsomal pellets. All centrifugations were done at 4°C using an MSE High Speed 18 centrifuge.

Microsomal pellets were solubilised by resuspending at approximately 2 mg/ml in 15 ml of 0.1 M phosphate buffer, pH 7.6, containing 0.01 M EDTA, 0.01 M glutathione, 0.25 M sucrose [11] and 0.5% sodium deoxycholate [7] and stirred in an ice-bath for 30 min. The solution was then centrifuged at 35 000 \times g at 4°C for 3 h. The supernatant obtained was used for protein analysis [6]. Cytochrome P-450 was assayed by the method of Omura and Sato [16] and NADPH-cytochrome P-450 reductase was assayed by a modification of the method of Masters et al. [12]. The assay depended upon measurement of the rate of cytochrome c reduction at 550 nm. The reaction mixture contained 2.9 ml microsomal protein and 0.2 µmol cytochrome c (Sigma, type III) contained in a 1 cm cuvette. The reaction was started by the addition of 0.1 M 0.2% NADPH (Sigma, type I) and the reaction was observed by measuring changes in absorbance at 550 nm against a blank which contained buffer solution minus NADPH.

Analytical determination

For dry weight determinations, the mycelium was harvested by Buchner filtration, washed with distilled water and dried at 70°C for 24 h, cooled in

a desiccator, and weighed.

Aflatoxins from the liquid medium and mycelium were extracted according to the methods of Shih and Marth [19] and Uraih and Chipley [23], respectively. Aflatoxin residues from sample vials were dissolved in 1 ml chloroform, and 10 μ l aliquots were spotted on thin-layer chromatography (TLC) plates coated with silica gel G (Merck). Aflatoxin standards of B_1 and G_1 were similarly spotted. The plates were then developed in the solvent system of toluene/ethyl acetate/chloroform/90% formic acid (70:50:50:20). The plates were dried in a fume-cupboard and observed under long wave ultraviolet light (366 nm) in a dark viewing cabinet (Type A, P.W. Allen & Co.). The samples which fluoresced at the same $R_{\rm f}$ values as the aflatoxin standards were marked and scraped off for quantitative spectrophotometric estimation (Shimadzu UV-120-02) according to the method of Nabney and Nesbitt [15].

Statistical analysis

An analysis of variance [14] was carried out for all results. The differences between the treatment means and the control mean were compared using least-significant analysis at 95% significant level.

RESULTS AND DISCUSSION

The effect of phenobarbital on growth, aflatoxin production and NADPH-cytochrome P-450 reductase activity by Aspergillus flavus

Growth of *A. flavus* was only slightly enhanced in the presence of 0.2% phenobarbital (Table 1). However, there was a marked increase in aflatoxin production with phenobarbital treatment. Aflatoxin B₁ levels increased from the control value of 885.4 μ g to 1825.8 μ g, while aflatoxin G₁ increased from 782.1 μ g to 1630.5 μ g (Table 1).

The level of NADPH-cytochrome *P*-450 reductase in the microsomes from the control cultures gradually increased from day 2 to a maximum level of 28.59 μ mol cytochrome *c* reduced/min/mg protein at day 6 (Fig. 1). The presence of phenobarbital in the culture medium enhanced the level of NADPH-cytochrome *c* reductase more than 2-fold. A maximum amount of the enzyme of 66.00 μ mol cytochrome *c* reduced/min/mg protein was obtained in 6-day-old microsomes.

Fig. 2 shows the carbon monoxide difference spectrum of reduced cytochrome *P*-450 of the solubilised microsomes of *A. flavus*. Two peaks were observed, viz. a small peak at 420 nm and a larger

Table 1

Effect of PB, SKF 525-A, metyrapone and cyanide on growth and aflatoxin production by A. flavus incubated at 25°C for 6 days Each result represents the mean \pm S.E.M. of six determinations.

Medium	Mycelial dry weight (g · 100 ml ⁻¹)	Aflatoxin (μ g · 100 ml ⁻¹)		Total $B_1 + G_1$	
		B ₁	G1	μ g · 100 ml ⁻¹	$\mu \mathbf{g} \cdot \mathbf{g}^{-1}$
Control	2.55 ± 0.11	885.4 ± 12.5	782.1 ± 8.5	1667.5 ± 21.1	653.9 ± 17.7
PB (0.2% w/v)	3.10 ± 0.08^{b}	1824.8 ± 15.7	$1630.8~\pm~12.8$	3455.6 ± 19.1	1114.7 ± 16.5
SKF 525-A (2 mM)	2.88 ± 0.09^{a}	159.5 ± 5.9	128.3 ± 9.8	387.8 ± 15.1	99.9 ± 6.5
Metyrapone (6 mM)	2.04 ± 0.10^{b}	591.6 ± 12.2	369.9 ± 8.7	961.5 ± 17.1	471.1 ± 10.8
KCN° (10 mM)	$2.21~\pm~0.09^{a}$	550.8 ± 8.8	$440.7~\pm~10.5$	991.5 ± 15.7	448.6 ± 11.7

^a No significant difference (P > 0.05) from control.

^b Significant difference (P < 0.05) from control.

^c Added to 2-day-old cultures to allow spore germination.

Fig. 1. Effect of phenobarbital on microsomal NADPH-cytochrome P-450 reductase from A. flavus. \bigcirc , control; \bigcirc , phenobarbital-treated.

peak at 450 nm. There was an increase in the peak at 450 nm with the PB-treated microsomes, thus substantiating the participation of cytochrome P-450 in the biosynthesis of the aflatoxins. The induction mechanism of PB is known to affect several levels of cytochrome P-450 monooxygenase [21]. The increase of cytochrome P-450 as well as

Fig. 2. Carbon monoxide difference spectra of reduced cytochrome *P*-450 of microsomes from *A. flavus*; microsomal protein content 2 mg/ml. ——, control; ----, phenobarbital-treated.

NADPH-cytochrome *P*-450 reductase was paralleled by an increase in aflatoxin biosynthesis of the fungus, this being in substantial agreement with the previous observations for *A. parasiticus* [5].

The increase in aflatoxin levels with phenobarbital treatment in the present results and with *A. parasiticus* [5] could be due to the increase in the activity of the monooxygenase enzyme system, since the hydroxylation of the pathway intermediates is a crucial step in aflatoxin biosynthesis. Conversion of versiconal hemiacetal acetate to versicolorin A [24] and sterigmatocystin to aflatoxin [20] could involve monooxygenase activities and, thus, could be stimulated by phenobarbital. Phenobarbital has been shown to stimulate trisporic acid production of *Blakeslea trispora* [8] and alkaloid production by *Claviceps purpurea* [1,2], and increased polysubstrate monooxygenase activity was demonstrated in each case.

The effect of SKF 525-A, metyrapone and cyanide on growth and aflatoxin production by Aspergillus flavus

SKF 525-A (2 mM) and KCN (10 mM) did not significantly affect growth of *A. flavus* over the experimental period. In contrast, metyrapone (6 mM) did result in a small but significant decrease in growth (Table 1).

All compounds significantly reduced aflatoxin production. The effect was most marked in the presence of SKF 525-A, with approximately 83% inhibition of total aflatoxin synthesis. Metyrapone and KCN caused 42% and 40% inhibition, respectively (Table 1). Similar inhibitory patterns were observed in the hydroxylation of benzo(a)pyrene by a microsomal preparation of *Aspergillus ochraceus* [10,11] and in the demethylation of pisatin (an antimicrobial compound produced by infected pea tissue) by *Nectaria haematococca* [13]. Cyanide also strongly inhibited the demethylation reaction in intact cells of the fungus [13].

The present results strongly implicate the involvement of the cytochrome P-450 monooxygenase enzyme system in aflatoxin biosynthesis by A. *flavus*.

ACKNOWLEDGEMENT

The authors wish to thank Dr. Jan Skidmore of Smith, Kline & French Research Ltd., Welwyn Garden City, for supply of SKF 525-A.

REFERENCES

- 1 Ambike, S.H. and R.M. Baxter. 1970. Cytochrome P-450 and B_5 in *Claviceps purpurea*: interconversion of P-450 and P-420. Phytochemistry 9: 1959–1962.
- 2 Ambike, S.H., R.M. Baxter and N.D. Zahid. 1970. The relationship of cytochrome P-450 levels and alkaloid synthesis in *Claviceps purpurea*. Phytochemistry 9: 1953–1958.
- 3 Ander, M.W. and G.J. Mannering. 1966. Inhibition of drug metabolism: I. Kinetics of the inhibition of the N-demethylation of ethylmorphine by 2-diethylaminoethyl 2,2-diphenylvalerate HCl (SKF 525-A) and related compounds. Mol. Pharmacol. 2: 317–327.
- 4 Anderson, M.S. and M.F. Dutton. 1979. The use of cell-free extracts derived from fungal protoplasts in the study of aflatoxin biosynthesis. Experientia 35: 21–22.
- 5 Bhatnagar, R.K., S. Ahmad, K.K. Kohli, K.G. Mukerji and T.A. Venkitasubramanian. 1982. Induction of polysubstrate monooxygenase and aflatoxin production by phenobarbitone in *Aspergillus parasiticus* NRRL 3240. Biochem. Biophys. Res. Commun. 4: 1287–1292.
- 6 Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
- 7 Breskvar, K. 1983. Solubilisation and separation of microsomal cytochrome P-450 and NADPH-cytochrome c reductase of *Rhizopus nigricans*. J. Steroid Biochem. 18: 51-63.
- 8 Bu'Lock, J.D. and D.J. Winstanley. 1971. Trisporic acid production by *Blakeslea trispora* and its promotion by barbiturate. J. Gen. Microbiol. 69: 391–394.
- 9 Ferris, J.P., L.H. MacDonald, M.A. Patrie and M.A. Martin. 1976. Aryl hydrocarbon hydroxylase activity in the fungus *Cunninghamella bainieri*: evidence for the presence of cytochrome P-450. Arch. Biochem. Biophys. 175: 443–452.
- 10 Ghosh, D.K., D. Dutta, T.B. Samanta and A.K. Mishra.

1983. Microsomal benzo(a)pyrene hydroxylase in *Aspergillus* ochraceus TS: assay and characterisation of the enzyme system. Biochem. Biophys. Res. Commun. 113: 497–505.

- 11 Ghosh, D. and T.B. Samanta. 1981. 11-hydroxylation of progesterone by cell-free preparations of *Aspergillus ochraceus* TS. J. Steroid Biochem. 14: 1063–1067.
- 12 Masters, B.S., C.H. William and H. Kamin. 1967. The preparation and properties of microsomal TPNH-cytochrome c reductase from pig liver. Methods Enzymol. 10: 567–573.
- 13 Matthews, D.E. and H.D. van Etten. 1983. Detoxification of the phytoalexin pisatin by a fungal cytochrome P-450. Arch. Biochem. Biophys. 224: 494–505.
- 14 Mead, R. and R.N. Curnow. 1983. Statistical Methods in Agriculture and Experimental Biology. Chapman and Hall, London.
- 15 Nabney, J. and B.F. Nesbitt. 1965. A spectrophotometric method for determining the aflatoxins. Analyst 90: 155–160.
- 16 Omura, T. and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its haemoprotein nature. J. Biol. Chem. 239: 2370–2377.
- 17 Poland, A., I. Mak, E. Glover, R.J. Boatman, F.H. Ebetino and A.S. Kende. 1980. 1,4-Bis(2-(3,5-dichloropyridyloxy))benzene, a potent phenobarbital-like inducer of microsomal monooxygenase activity. Mol. Pharmacol. 18: 571–580.
- 18 Rosazza, J.P. and R.V. Smith. 1979. Microbial models for drug metabolism. Adv. Appl. Microbiol. 25: 169–208.
- 19 Shih, C.N. and E.H. Marth. 1974. Aflatoxin formation, lipid synthesis and glucose metabolism by *Aspergillus parasiticus* during incubation with and without agitation. Biochim. Biophys. Acta 338: 286–296.
- 20 Singh, R. and D.P.H. Hsieh. 1976. Enzymatic conversion of sterigmatocystin into aflatoxin B₁ by cell-free extracts of *Aspergillus parasiticus*. Appl. Environ. Microbiol. 31: 743– 745.
- 21 Smith, R.V. and P.J. Davis. 1980. Induction of xenobiotic monooxygenases. Adv. Biochem. Eng. 14: 62–100.
- 22 Townsend, C.A. 1986. Progress toward a biosynthetic rationale of the aflatoxin pathway. Pure Appl. Chem. 58: 227–238.
- 23 Uraih, N. and J.R. Chipley. 1976. Effects of various acids and salts on growth and aflatoxin production by *Aspergillus flavus* NRRL 3145. Microbios 17: 51–59.
- 24 Wan, N.C. and D.P.H. Hsieh. 1980. Enzymatic formation of the bisfuran structure in aflatoxin biosynthesis. Appl. Environ. Microbiol. 39: 109–112.